[ Pobierz całość w formacie PDF ]
6.1.1 Obliczenie potrzebnych wymiarów stopy Ŝelbetowej pod słup Ŝelbetowy - słup skrajny numer 1
a) Wymiarowanie ze względu na M
max
i T oraz N
odp
ZałoŜenia Projektowe
Piasek średni Ps
I
D
=
0,4
Zagłębienie Fundamentu Dmin [m] =
Wielkości charakterystyczne Parametrów Gruntu:
1,2
Gęstość Właściwa Gruntu [t/m3]=
CięŜar Objętościowy Gruntu [kN/m3]=
1,85
18,5
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
32,4
0,0
STAŁE
pi =
3,14
OK
Współczynnik Materiałowy=
0,9
e =
2,7182
L>=1,7*B
Wielkości obliczeniowe Parametrów Gruntu:
CięŜar Objętościowy Gruntu grB [kN/m2]=
16,65
długość [m]
L =
1,6
CięŜar Objętościowy Gruntu grD [kN/m2]=
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
16,65
L (uwzględnia mimośród) =
1,60
29,16
szerokość [m]
B =
1,6
0
B (uwzględnia mimośród) =
1,54
Obliczanie Współczynnika Nośności:
ND =
16,724
wys. Fundamentu
H =
0,6
m
NC =
28,181
obc. uŜytkowe
p =
9,00
kN/m2
NB =
6,580
obciąŜenie zmienne z
1
strony
Fundament ObciąŜony Siłą Pionową, Siłami
Poziomymi działającymi wzdłuŜ krawędzi i Momentami
Zginającymi działającymi w obu kierunkach (siłą
ukośną przechodzącą przez środek podstawy +
momenty)
Fundament ObciąŜony Siłą Pionową, Siłami
Nrs =
Nrs =
1387,8
1387,8
mimośród eL =
mimośród eL =
0,0000
0,0000
L =
L =
1,60
1,60
Grfg =
88,17
1475,97
Nr =
TrB =
-47,9
mimośród eB =
0,0309
B =
1,54
TrL =
0
Tangensy kątów nachylenia odchylenia wypadkowych od
pionu i tangens kąta tarcia wewnętrznego (fi)
MrB =
74,4
MrL =
0
tg aB = -0,032
tg (fi) = 0,5580
Wartość Pionowej składowej obliczeniowego oporu granicznego podłoŜa względem szerokości i długości
tg aL = 0
Zapas w nośności %
Warunek stanu granicznego jest spełniony
QfNB =
2104,66
1704,78
<=0,81QfNB
15,50
Stosunek tangensa kąta nachylenia wypadkowych do
tangensa kąta tarcia wewnętrznego
0,81QfNB=
1704,78
> Nr
1475,97
28,19
Warunek stanu granicznego jest spełniony
QfNL =
2335,88
1892,06
<=0,81QfNL
0,81QfNB=
1892,06
> Nr
1475,97
HL =
0
HB =
-0,0582
L= 1,6
B= 1,6
Współczynniki wpływu odchylenia wypadkowej obciąŜenia
(odczytane z normy PN-81/B 03020 str. 18)
dla szerokości
OK
dla długości
6. NapręŜenia pod stopą
a
509,66
kN/m2
iC =
0,92
iC =
1
b
509,66
kN/m2
iD =
0,91
iD =
1
c
643,43
kN/m2
iB =
0,88
iB =
1
d
643,43
kN/m2
Uwaga:
Grfg zwiększa wartość pionowej siły ściskającej od słupa Nrs o wartość siły od cięŜaru własnego stopy Ŝelbetowej z
zalegającym nad nią gruntem oraz cięŜaru od obciąŜeń uŜytkowych posadzki Grfg = 1,1*L*B*Dmin*25+0,5*B*L*1,2*p
1
6.1.2 Sprawdzenie przebicia - słup skrajny numer 1 (30x50)
1. Po analizie algorytmów dla dwóch kombinacji obciąŜeń przyjęto stope o następujących parametrach:
Nrs =
1475,97
kN
σmax =
643,43
kN/m2
a1 =
6
cm
Beton B25
fcd =
13,3
Mpa
d =
54
cm
fctm =
2,2
Mpa
h1 =
40
cm
fctd =
1
Mpa
h2 =
20
cm
Stal AIIIN B500Sp fyd =
420
Mpa
H =
60
cm
Stal AIIIN B500Sp fyk =
500
Mpa
L =
160
cm
B =
160
cm
L1 =
120
cm
B1 =
120
cm
L2 =
20
cm
B2 =
20
cm
asL =
30
cm
asB =
50
cm
al. =
45
cm
aB =
35
cm
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
Pole trapezu
A = (L1+L) / 2 * B2 =
Sx = [ (1/2 * B2 * L2) * B2/3 ] * 2 + L1 * B2 * B2 / 2 =
y = Sx / A =
2800
cm2
Moment statyczny
26 667
cm3
Środek cięŜkości
9,52
cm
Moment zginający
Mr = A * σ
max
* ( B/2 - y ) =
ξeff = 1 - [( 1- 2 * Mr / ( B2 * d^2 * fcd) )^(1/2)] =
As = ξeff * B2 * d * fcd / fyd =
126,97
kNm
0,180
< 0,5
6,15
cm2
Pole zbrojenia
Pole zbrojenia
ρ = As / ( B2 * d ) =
0,57
%
Minimalna pow. zbrojenia
As min =
max
0,26 * ( fctm / fyk ) * B2 * d =
0,0013 * B2 * d =
9,88
cm2
11,23
cm2
As =
6,15
<
As min
11,23
14
w ilości :
8
na całej długości i szerokości stopy
Przyjęto pręty Φ =
o As =
12,31
cm2
3. Sprawdzenie przebicia (wg 5.6.1 normy)
Nrs - σ
* A < fctd * up * d'
asB/2 + aB
d'
=
asB/2 + d
d
A = (asB+2*d*tg45)*(asL+2*d*tg45) =
up = 0,5*(2*asL+2asB+4*B) =
2,18
m2
d' =(asB / 2 + aB) * d / (asB / 2 + d)
4,00
m
d' =
41,01
cm
Nrs - σ
* A < fctd * up * d'
< fctd * up * d' =
Przebicie stopy trapezowej przez słup Ŝelbetowy nie wystąpi.
Nrs - σ * A =
73,02
1640,51
[kN]
2
6.1.3 Obliczenie potrzebnych wymiarów stopy Ŝelbetowej pod słup Ŝelbetowy - słup skrajny numer 1
b) Wymiarowanie ze względu na N
max
i T oraz M
odp
ZałoŜenia Projektowe
Zagłębienie Fundamentu Dmin [m] =
Wielkości charakterystyczne Parametrów Gruntu:
Piasek średni Ps
I
D
=
0,4
1,2
Gęstość Właściwa Gruntu [t/m3]=
1,85
CięŜar Objętościowy Gruntu [kN/m3]=
18,5
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
32,4
0,0
STAŁE
pi =
3,14
OK
Współczynnik Materiałowy=
0,9
e =
2,7182
L>=1,7*B
Wielkości obliczeniowe Parametrów Gruntu:
CięŜar Objętościowy Gruntu grB [kN/m2]=
16,65
długość [m]
L =
1,8
CięŜar Objętościowy Gruntu grD [kN/m2]=
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
16,65
L (uwzględnia mimośród) =
1,80
29,16
szerokość [m]
B =
1,8
0
B (uwzględnia mimośród) =
1,76
Obliczanie Współczynnika Nośności:
ND =
16,724
wys. Fundamentu
H =
0,6
m
NC =
28,181
obc. uŜytkowe
p =
9,00
kN/m2
NB =
6,580
obciąŜenie zmienne z
1
strony
Fundament ObciąŜony Siłą Pionową, Siłami
Nrs =
1833,5
mimośród eL =
0,0000
L =
1,80
Fundament ObciąŜony Siłą Pionową, Siłami
Poziomymi działającymi wzdłuŜ krawędzi i Momentami
Zginającymi działającymi w obu kierunkach (siłą
ukośną przechodzącą przez środek podstawy +
momenty)
Nrs =
1833,5
mimośród eL =
0,0000
L =
1,80
Grfg =
111,59
Nr =
1945,09
TrB =
-44,4
mimośród eB =
0,0223
B =
1,76
TrL =
0
Tangensy kątów nachylenia odchylenia wypadkowych od
pionu i tangens kąta tarcia wewnętrznego (fi)
MrB =
70
MrL =
0
5. Wartość Pionowej składowej obliczeniowego oporu granicznego podłoŜa względem szerokości i
długości
tg aB = -0,023
tg (fi) = 0,5580
tg aL = 0
Zapas w nośności %
Warunek stanu granicznego jest spełniony
QfNB =
2727,88
2209,58
<=0,81QfNB
13,60
Stosunek tangensa kąta nachylenia wypadkowych do
tangensa kąta tarcia wewnętrznego
0,81QfNB=
2209,58
> Nr
1945,09
27,91
Warunek stanu granicznego jest spełniony
QfNL =
3071,54
2487,95
<=0,81QfNL
0,81QfNB=
2487,95
> Nr
1945,09
HL =
0
HB =
-0,0409
L= 1,8
B= 1,8
Współczynniki wpływu odchylenia wypadkowej obciąŜenia
(odczytane z normy PN-81/B 03020 str. 18)
dla szerokości
OK
dla długości
6. NapręŜenia pod stopą
a
555,73
kN/m2
iC =
0,91
iC =
1
b
555,73
kN/m2
iD =
0,89
iD =
1
c
644,94
kN/m2
iB =
0,9
iB =
1
d
644,94
kN/m2
Uwaga:
Grfg zwiększa wartość pionowej siły ściskającej od słupa Nrs o wartość siły od cięŜaru własnego stopy Ŝelbetowej z
zalegającym nad nią gruntem oraz cięŜaru od obciąŜeń uŜytkowych posadzki Grfg = 1,1*L*B*Dmin*25+0,5*B*L*10,8
3
6.1.4 Sprawdzenie przebicia - słup skrajny numer 1 (30x50)
1. Po analizie algorytmów dla dwóch kombinacji obciąŜeń przyjęto stope o następujących parametrach:
Nrs =
1945,09
kN
σmax =
644,94
kN/m2
a1 =
6
cm
Beton B25
fcd =
13,3
Mpa
d =
54
cm
fctm =
2,2
Mpa
h1 =
40
cm
fctd =
1
Mpa
h2 =
20
cm
Stal AIIIN B500Sp fyd =
420
Mpa
H =
60
cm
Stal AIIIN B500Sp fyk =
500
Mpa
L =
180
cm
B =
180
cm
L1 =
140
cm
B1 =
140
cm
L2 =
20
cm
B2 =
20
cm
asL =
30
cm
asB =
50
cm
al. =
55
cm
aB =
45
cm
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
Pole trapezu
A = (L1+L) / 2 * B2 =
Sx = [ (1/2 * B2 * L2) * B2/3 ] * 2 + L1 * B2 * B2 / 2 =
y = Sx / A =
3200
cm2
Moment statyczny
30 667
cm3
Środek cięŜkości
9,58
cm
Moment zginający
165,97
kNm
Mr = A * σ
max
* ( B/2 - y ) =
ξeff = 1 - [( 1- 2 * Mr / ( B2 * d^2 * fcd) )^(1/2)] =
As = ξeff * B2 * d * fcd / fyd =
0,244
< 0,5
8,33
cm2
Pole zbrojenia
ρ = As / ( B2 * d ) =
Pole zbrojenia
0,77
%
Minimalna pow. zbrojenia
As min =
max
0,26 * ( fctm / fyk ) * B2 * d =
0,0013 * B2 * d =
11,12
cm2
12,64
cm2
As =
8,33
<
As min
12,64
14
w ilości :
9
na całej długości i szerokości stopy
Przyjęto pręty Φ =
o As =
13,85
cm2
3. Sprawdzenie przebicia (wg 5.6.1 normy)
Nrs - σ
* A < fctd * up * d'
asB/2 + aB
d'
=
asB/2 + d
d
A = (asB+2*d*tg45)*(asL+2*d*tg45) =
up = 0,5*(2*asL+2asB+4*B) =
2,18
m2
d' =(asB / 2 + aB) * d / (asB / 2 + d)
4,40
m
d' =
47,85
cm
Nrs - σ
* A < fctd * up * d'
< fctd * up * d' =
Nrs - σ * A =
538,85
2105,32
[kN]
Przebicie stopy trapezowej przez słup Ŝelbetowy nie wystąpi.
4
[ Pobierz całość w formacie PDF ]
zanotowane.pl doc.pisz.pl pdf.pisz.pl jajeczko.pev.pl
6.1.1 Obliczenie potrzebnych wymiarów stopy Ŝelbetowej pod słup Ŝelbetowy - słup skrajny numer 1
a) Wymiarowanie ze względu na M
max
i T oraz N
odp
ZałoŜenia Projektowe
Piasek średni Ps
I
D
=
0,4
Zagłębienie Fundamentu Dmin [m] =
Wielkości charakterystyczne Parametrów Gruntu:
1,2
Gęstość Właściwa Gruntu [t/m3]=
CięŜar Objętościowy Gruntu [kN/m3]=
1,85
18,5
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
32,4
0,0
STAŁE
pi =
3,14
OK
Współczynnik Materiałowy=
0,9
e =
2,7182
L>=1,7*B
Wielkości obliczeniowe Parametrów Gruntu:
CięŜar Objętościowy Gruntu grB [kN/m2]=
16,65
długość [m]
L =
1,6
CięŜar Objętościowy Gruntu grD [kN/m2]=
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
16,65
L (uwzględnia mimośród) =
1,60
29,16
szerokość [m]
B =
1,6
0
B (uwzględnia mimośród) =
1,54
Obliczanie Współczynnika Nośności:
ND =
16,724
wys. Fundamentu
H =
0,6
m
NC =
28,181
obc. uŜytkowe
p =
9,00
kN/m2
NB =
6,580
obciąŜenie zmienne z
1
strony
Fundament ObciąŜony Siłą Pionową, Siłami
Poziomymi działającymi wzdłuŜ krawędzi i Momentami
Zginającymi działającymi w obu kierunkach (siłą
ukośną przechodzącą przez środek podstawy +
momenty)
Fundament ObciąŜony Siłą Pionową, Siłami
Nrs =
Nrs =
1387,8
1387,8
mimośród eL =
mimośród eL =
0,0000
0,0000
L =
L =
1,60
1,60
Grfg =
88,17
1475,97
Nr =
TrB =
-47,9
mimośród eB =
0,0309
B =
1,54
TrL =
0
Tangensy kątów nachylenia odchylenia wypadkowych od
pionu i tangens kąta tarcia wewnętrznego (fi)
MrB =
74,4
MrL =
0
tg aB = -0,032
tg (fi) = 0,5580
Wartość Pionowej składowej obliczeniowego oporu granicznego podłoŜa względem szerokości i długości
tg aL = 0
Zapas w nośności %
Warunek stanu granicznego jest spełniony
QfNB =
2104,66
1704,78
<=0,81QfNB
15,50
Stosunek tangensa kąta nachylenia wypadkowych do
tangensa kąta tarcia wewnętrznego
0,81QfNB=
1704,78
> Nr
1475,97
28,19
Warunek stanu granicznego jest spełniony
QfNL =
2335,88
1892,06
<=0,81QfNL
0,81QfNB=
1892,06
> Nr
1475,97
HL =
0
HB =
-0,0582
L= 1,6
B= 1,6
Współczynniki wpływu odchylenia wypadkowej obciąŜenia
(odczytane z normy PN-81/B 03020 str. 18)
dla szerokości
OK
dla długości
6. NapręŜenia pod stopą
a
509,66
kN/m2
iC =
0,92
iC =
1
b
509,66
kN/m2
iD =
0,91
iD =
1
c
643,43
kN/m2
iB =
0,88
iB =
1
d
643,43
kN/m2
Uwaga:
Grfg zwiększa wartość pionowej siły ściskającej od słupa Nrs o wartość siły od cięŜaru własnego stopy Ŝelbetowej z
zalegającym nad nią gruntem oraz cięŜaru od obciąŜeń uŜytkowych posadzki Grfg = 1,1*L*B*Dmin*25+0,5*B*L*1,2*p
1
6.1.2 Sprawdzenie przebicia - słup skrajny numer 1 (30x50)
1. Po analizie algorytmów dla dwóch kombinacji obciąŜeń przyjęto stope o następujących parametrach:
Nrs =
1475,97
kN
σmax =
643,43
kN/m2
a1 =
6
cm
Beton B25
fcd =
13,3
Mpa
d =
54
cm
fctm =
2,2
Mpa
h1 =
40
cm
fctd =
1
Mpa
h2 =
20
cm
Stal AIIIN B500Sp fyd =
420
Mpa
H =
60
cm
Stal AIIIN B500Sp fyk =
500
Mpa
L =
160
cm
B =
160
cm
L1 =
120
cm
B1 =
120
cm
L2 =
20
cm
B2 =
20
cm
asL =
30
cm
asB =
50
cm
al. =
45
cm
aB =
35
cm
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
Pole trapezu
A = (L1+L) / 2 * B2 =
Sx = [ (1/2 * B2 * L2) * B2/3 ] * 2 + L1 * B2 * B2 / 2 =
y = Sx / A =
2800
cm2
Moment statyczny
26 667
cm3
Środek cięŜkości
9,52
cm
Moment zginający
Mr = A * σ
max
* ( B/2 - y ) =
ξeff = 1 - [( 1- 2 * Mr / ( B2 * d^2 * fcd) )^(1/2)] =
As = ξeff * B2 * d * fcd / fyd =
126,97
kNm
0,180
< 0,5
6,15
cm2
Pole zbrojenia
Pole zbrojenia
ρ = As / ( B2 * d ) =
0,57
%
Minimalna pow. zbrojenia
As min =
max
0,26 * ( fctm / fyk ) * B2 * d =
0,0013 * B2 * d =
9,88
cm2
11,23
cm2
As =
6,15
<
As min
11,23
14
w ilości :
8
na całej długości i szerokości stopy
Przyjęto pręty Φ =
o As =
12,31
cm2
3. Sprawdzenie przebicia (wg 5.6.1 normy)
Nrs - σ
* A < fctd * up * d'
asB/2 + aB
d'
=
asB/2 + d
d
A = (asB+2*d*tg45)*(asL+2*d*tg45) =
up = 0,5*(2*asL+2asB+4*B) =
2,18
m2
d' =(asB / 2 + aB) * d / (asB / 2 + d)
4,00
m
d' =
41,01
cm
Nrs - σ
* A < fctd * up * d'
< fctd * up * d' =
Przebicie stopy trapezowej przez słup Ŝelbetowy nie wystąpi.
Nrs - σ * A =
73,02
1640,51
[kN]
2
6.1.3 Obliczenie potrzebnych wymiarów stopy Ŝelbetowej pod słup Ŝelbetowy - słup skrajny numer 1
b) Wymiarowanie ze względu na N
max
i T oraz M
odp
ZałoŜenia Projektowe
Zagłębienie Fundamentu Dmin [m] =
Wielkości charakterystyczne Parametrów Gruntu:
Piasek średni Ps
I
D
=
0,4
1,2
Gęstość Właściwa Gruntu [t/m3]=
1,85
CięŜar Objętościowy Gruntu [kN/m3]=
18,5
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
32,4
0,0
STAŁE
pi =
3,14
OK
Współczynnik Materiałowy=
0,9
e =
2,7182
L>=1,7*B
Wielkości obliczeniowe Parametrów Gruntu:
CięŜar Objętościowy Gruntu grB [kN/m2]=
16,65
długość [m]
L =
1,8
CięŜar Objętościowy Gruntu grD [kN/m2]=
Kąt Tarcia Wewnętrznego [stopnie]=
Spójność Gruntu [kPa]=
16,65
L (uwzględnia mimośród) =
1,80
29,16
szerokość [m]
B =
1,8
0
B (uwzględnia mimośród) =
1,76
Obliczanie Współczynnika Nośności:
ND =
16,724
wys. Fundamentu
H =
0,6
m
NC =
28,181
obc. uŜytkowe
p =
9,00
kN/m2
NB =
6,580
obciąŜenie zmienne z
1
strony
Fundament ObciąŜony Siłą Pionową, Siłami
Nrs =
1833,5
mimośród eL =
0,0000
L =
1,80
Fundament ObciąŜony Siłą Pionową, Siłami
Poziomymi działającymi wzdłuŜ krawędzi i Momentami
Zginającymi działającymi w obu kierunkach (siłą
ukośną przechodzącą przez środek podstawy +
momenty)
Nrs =
1833,5
mimośród eL =
0,0000
L =
1,80
Grfg =
111,59
Nr =
1945,09
TrB =
-44,4
mimośród eB =
0,0223
B =
1,76
TrL =
0
Tangensy kątów nachylenia odchylenia wypadkowych od
pionu i tangens kąta tarcia wewnętrznego (fi)
MrB =
70
MrL =
0
5. Wartość Pionowej składowej obliczeniowego oporu granicznego podłoŜa względem szerokości i
długości
tg aB = -0,023
tg (fi) = 0,5580
tg aL = 0
Zapas w nośności %
Warunek stanu granicznego jest spełniony
QfNB =
2727,88
2209,58
<=0,81QfNB
13,60
Stosunek tangensa kąta nachylenia wypadkowych do
tangensa kąta tarcia wewnętrznego
0,81QfNB=
2209,58
> Nr
1945,09
27,91
Warunek stanu granicznego jest spełniony
QfNL =
3071,54
2487,95
<=0,81QfNL
0,81QfNB=
2487,95
> Nr
1945,09
HL =
0
HB =
-0,0409
L= 1,8
B= 1,8
Współczynniki wpływu odchylenia wypadkowej obciąŜenia
(odczytane z normy PN-81/B 03020 str. 18)
dla szerokości
OK
dla długości
6. NapręŜenia pod stopą
a
555,73
kN/m2
iC =
0,91
iC =
1
b
555,73
kN/m2
iD =
0,89
iD =
1
c
644,94
kN/m2
iB =
0,9
iB =
1
d
644,94
kN/m2
Uwaga:
Grfg zwiększa wartość pionowej siły ściskającej od słupa Nrs o wartość siły od cięŜaru własnego stopy Ŝelbetowej z
zalegającym nad nią gruntem oraz cięŜaru od obciąŜeń uŜytkowych posadzki Grfg = 1,1*L*B*Dmin*25+0,5*B*L*10,8
3
6.1.4 Sprawdzenie przebicia - słup skrajny numer 1 (30x50)
1. Po analizie algorytmów dla dwóch kombinacji obciąŜeń przyjęto stope o następujących parametrach:
Nrs =
1945,09
kN
σmax =
644,94
kN/m2
a1 =
6
cm
Beton B25
fcd =
13,3
Mpa
d =
54
cm
fctm =
2,2
Mpa
h1 =
40
cm
fctd =
1
Mpa
h2 =
20
cm
Stal AIIIN B500Sp fyd =
420
Mpa
H =
60
cm
Stal AIIIN B500Sp fyk =
500
Mpa
L =
180
cm
B =
180
cm
L1 =
140
cm
B1 =
140
cm
L2 =
20
cm
B2 =
20
cm
asL =
30
cm
asB =
50
cm
al. =
55
cm
aB =
45
cm
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
2. Obliczenie momentu Mr i dobranie zbrojenia (jednakowego na obu kierunkach), metoda trapezowa:
Pole trapezu
A = (L1+L) / 2 * B2 =
Sx = [ (1/2 * B2 * L2) * B2/3 ] * 2 + L1 * B2 * B2 / 2 =
y = Sx / A =
3200
cm2
Moment statyczny
30 667
cm3
Środek cięŜkości
9,58
cm
Moment zginający
165,97
kNm
Mr = A * σ
max
* ( B/2 - y ) =
ξeff = 1 - [( 1- 2 * Mr / ( B2 * d^2 * fcd) )^(1/2)] =
As = ξeff * B2 * d * fcd / fyd =
0,244
< 0,5
8,33
cm2
Pole zbrojenia
ρ = As / ( B2 * d ) =
Pole zbrojenia
0,77
%
Minimalna pow. zbrojenia
As min =
max
0,26 * ( fctm / fyk ) * B2 * d =
0,0013 * B2 * d =
11,12
cm2
12,64
cm2
As =
8,33
<
As min
12,64
14
w ilości :
9
na całej długości i szerokości stopy
Przyjęto pręty Φ =
o As =
13,85
cm2
3. Sprawdzenie przebicia (wg 5.6.1 normy)
Nrs - σ
* A < fctd * up * d'
asB/2 + aB
d'
=
asB/2 + d
d
A = (asB+2*d*tg45)*(asL+2*d*tg45) =
up = 0,5*(2*asL+2asB+4*B) =
2,18
m2
d' =(asB / 2 + aB) * d / (asB / 2 + d)
4,40
m
d' =
47,85
cm
Nrs - σ
* A < fctd * up * d'
< fctd * up * d' =
Nrs - σ * A =
538,85
2105,32
[kN]
Przebicie stopy trapezowej przez słup Ŝelbetowy nie wystąpi.
4
[ Pobierz całość w formacie PDF ]